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Abstract

We are surrounded by surfaces that we perceive by visual means. Understanding the basic principles
behind this perceptual process is a central theme in visual psychology, psychophysics and computational
vision. Metric descriptions of physical space encoding distances between features in the environment
have been used throughout the ages for various purposes. Naturally, such descriptions were used by
early theorists for modelling perceptual space; that is, surfaces may be represented in our brains by
encoding the distance of each point on the surface from our eye. The development of technology has
allowed empirical scientists to perform accurate experiments measuring properties of perceptual space.
It turns out that humans estimate a distorted version of their extra-personal space. A large number of
experiments have been performed to study stereoscopic depth perception using tasks that involve the
judgment of depth at different distances [8, 9, 13, 22]. Recently, a few experiments have been conducted
to compare aspects of depth judgment due to stereoscopic and monocular motion perception [24]. In
these experiments, it has been shown that from stereo vision humans over-estimate depth (relative
to fronto-parallel size) at near fixations and under-estimate it at far fixations, whereas human depth
estimates from visual motion are not affected by the fixation point. On the other hand, the orientation
of an object in space does not affect depth judgment in stereo vision while it has a strong effect in
motion vision, for the class of motions tested. This paper develops a computational geometric model
that explains why such distortion might take place. The basic idea is that, both in stereo and motion,
we perceive the world from multiple views. Given the rigid transformation between the views and the
properties of the image correspondence, the depth of the scene can be obtained. Even a slight error in
the rigid transformation parameters causes distortion of the computed depth of the scene. The unified
framework introduced here describes this distortion in computational terms, in order to explain a number
of recent psychophysical experiments on the perception of depth from motion or stereo.
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1 Introduction

The nature of the representation of the world inside our heads as acquired by visual
perception has persisted as a topic of investigation for thousands of years, from the works
of Aristotle to the present [19]. In our day, answers to this question have several practical
consequences in the field of robotics and automation. An artificial system equipped with
visual sensors needs to develop representations of its environment in order to interact
successfully with it. At the same time, understanding the way space is represented in the
brains of biological systems is key to unravelling the mysteries of perception. We refer
later to space represented inside a biological or artificial system as perceptual space, as
opposed to physical, extra-personal space.

Interesting non-computational theories of perceptual space have appeared over the
years in the fields of philosophy and cognitive science [17]. Computational theories, on
the other hand, developed during the past thirty years in the area of computer vision,
have followed a brute-force approach, equating physical space with perceptual space. Eu-
clidean geometry involving metric properties has been used very successfully in modelling
physical space. Thus, early attempts at modelling perceptual space concentrated on de-
veloping metric three-dimensional descriptions of space, as if it were the same as physical
space. In other words, perceptual space was modelled by encoding the exact distances of
features in three dimensions. The apparent ease with which humans perform a plethora
of vision-guided tasks creates the impression that humans, at least, compute representa-
tions of space that have a high degree of generality; thus, the conventional wisdom that
these descriptions are of a Euclidean metric nature was born and has persisted until now
[1, 12, 19].

Computational considerations, however, can convince us that for a monocular or a
binocular system moving in the world it is not possible to estimate an accurate de-
scription of three-dimensional metric structure, i.e., the exact distances of points in the
environment from the nodal point of the eye or camera. This paper explains this in com-
putational terms for the case of perceiving the world from multiple views. This includes
the cases of both motion and stereo. Given two views of the world, whether these are the
left and right views of a stereo system or successive views acquired by a moving system,
the depth of the scene in view depends on two factors: (a) the three-dimensional rigid
transformation between the views, hereafter called the 3D transformation, and (b) the
identification of image features in the two views that correspond to the same feature in
the 3D world, hereafter called visual correspondence.

If there were no errors in the 3D transformation or the visual correspondence, then
clearly the depth of the scene in view could be accurately recovered and thus a metric
description could be obtained for perceptual space. Unfortunately, this is never the
case. In the case of stereo, the 3D transformation amounting to the extrinsic calibration
parameters of the stereo rig cannot be accurately estimated, only approximated [4].
In the case of motion, the three-dimensional motion parameters describing rotation and
translation are estimated within error bounds [3, 5, 20, 26]. Finally, visual correspondence
itself cannot be obtained perfectly; errors are always present. Thus, because of errors
in both visual correspondence and 3D transformation, the recovered depth of the scene
is always a distorted version of the scene structure. The fundamental contribution of
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this paper is the development of a computational framework showing the geometric laws
under which the recovered scene shape is distorted. In other words, there is a systematic
way in which visual space is distorted; the transformation from physical to perceptual
space belongs to the family of Cremona transformations [23).!

The power of the computational framework we introduce is demonstrated by using
it to explain recent results in psychophysics. A number of recent psychophysical exper-
iments have shown that humans make incorrect judgments of depth using either stereo
[9, 13] or motion [24]. Our computational theory explains these psychophysical results
and demonstrates that perceived space is not describable using a well-established geom-
etry such as hyperbolic, elliptic, affine or projective. Understanding the invariances of
distorted perceived space will contribute to the understanding of robust representations
of shape and space, with many consequences for the problem of recognition. This work
was motivated by our recent work on direct perception and qualitative shape representa-
tion [6, 7] and was inspired by the work of Koenderink and van Doorn on pictorial relief
[16].

The organization of this paper is as follows. Section 2.1 introduces the concept of
iso-distortion surfaces. Considering two close views, arising from a system in general
rigid motion, we relate image motion measurements to the parameters of the 3D rigid
motion and the depth of the scene. Then, assuming that there is an error in the rigid
motion parameters, we find the computed depth as a function of the actual depth and
the parameters of the system. Considering the points in space that are distorted by the
same amount, we find them to lie on surfaces that in general are hyperboloids. These are
the iso-distortion surfaces that form the core of our approach. In Section 2.2 we further
describe the iso-distortion surfaces in both 3D and visual space and we introduce the
concept of the holistic or H-surfaces. These are surfaces that describe all iso-distortion
surfaces distorted by the same amount, irrespective of the direction (n,, n,) in the image
in which measurements of visual correspondence are made. The H-surfaces are important
in our analysis of the case of motion since measurements of local image motion can be in
any direction and not just along the horizontal direction which is dominant in the case of
stereo. Section 3 describes psychophysical experiments from the recent literature using
motion and stereo, and Section 4 explains their results using the iso-distortion frame-
work. Section 4.1 describes in detail the coordinate systems and the underlying rigid
transformations for the specific experiments. Sections 4.2 and 4.3 explain the experi-
mental results for motion and stereo respectively using the framework introduced here.
The experiments on both motion and stereo chosen here were cleverly designed by Tittle
et al. [24] so that the underlying geometries of the motion and stereo configurations are
qualitatively similar. Thus, they are of great comparative interest. The computational
arguments presented here are based on two key ideas. First, the 2D image representation
derived for stereo perception is of a different nature than the one derived for motion
perception. Second, the only thing assumed about the scene is that it lies in front of
the image plane, and thus all depth estimates have to be positive; therefore, the percep-

In the projective plane, a transformation (z,y,2) — (z',¥',2') with pz’ = ¢1(2,9,2), py =
#2(z,y,2), p2’ = ¢3(z,y, z) where ¢1,$2, 3 are homogeneous polynomials and p any scalar, is called a
rational transformation. A rational transformation whose inverse exists and is also rational is called a

Cremona transformation.



tual system, when estimating 3D motion, minimizes the number of image points whose
corresponding scene points have negative depth values due to errors in the estimate of
the motion. Section 5 concludes the paper and discusses the relationship of this work to
other attempts in the literature to capture the essence of perceptual space.

2 Distortion of Visual Space

2.1 Iso-distortion Surfaces

As an image formation model, we use the standard model of perspective projection on
the plane, with the image plane at a distance f from the nodal point parallel to the
XY plane, and the viewing direction along the positive Z axis as illustrated in Figure 1.
We want a model that can be used both for motion and stereo. Thus, we consider a
differential model of rigid motion. This model is valid for stereo, which constitutes a
special constrained motion, when making the small baseline approximation that is used
widely in the literature [16].

Image Plane

Figure 1: The image formation model. OXY Z is a coordinate system fixed to the camera.
O is the optical center and the positive Z-axis is the direction of view. The image plane
is located at a focal length f pixels from O along the Z-axis. A point P at (X,Y,Z) in
the world produces an image point p at (z,y) on the image plane where (z,y) is given by
(%, %’) The instantaneous motion of the camera is given by the translational vector
(U,V,W) and the rotational vector (e, 8,7).

The change of viewing geometry is described through a rigid motion with translational
velocity (U, V, W) and rotational velocity (e, §,7) of the observer in the coordinate sys-

tem OXY Z.
As a consequence of the scaling ambiguity, only the direction of translation (zo,yo) =

(—% 1, 'v% f) represented in the image plane by the epipole (also called the FOE (focus
of expansion) or FOC (focus of contraction) depending on whether W is positive or
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negative), the scaled depth Z/W and the rotational parameters can possibly be obtained
from flow measurements. Using this notation the equations relating the 2D velocity
U = (4,v) = (Utrans + Urot, Vtrans + Urot) Of an image point to the 3D velocity and the depth
of the corresponding scene point are

W 2
u = utrans+urot=($_$0)_+a$y—/8(iv—+f)+7y

Z 7
%% 2 z
v = Utrans'l'vrot:(y_yO)—Z—'*'a(%"*‘f)—é‘“fﬁ—’)’w (l)

where Utrans, Virans are the horizontal and vertical components of the flow due to trans-
lation, and et, Uror the horizontal and vertical components of the flow due to rotation,

respectively.
The velocity component u,, of the flow in any direction n = (n, n,) has value

Up = UNg + VM. (2)

Knowing the parameters of the viewing geometry exactly, the scaled depth can be derived
from (2). Since the depth can only be derived up to a scale factor, we set W =1 and

obtain
_ (@ = zo)nz + (v — o)y

Un, — UrotNy — UrotMy

Z

If there is an error in the estimation of the viewing geometry, this will in turn cause
errors in the estimation of the scaled depth, and thus a distorted version of space will
be computed. In order to capture the distortion of the estimated space, we describe
it through surfaces in space which are distorted by the same multiplicative factor, the
so-called iso-distortion surfaces. To distinguish between the various estimates, we use the
hat sign “ * ” to represent estimated quantities, the unmarked letters to denote the actual
quantities, and the subscript “€” to represent errors, where the estimates are related as

follows:

(Z0,%0) = (%o — Zo.» Y0 — Yo.)
(‘%ﬂ?’?) = (a_aeaﬂ’_ﬁca'y_’yc)
ﬁrot = (&rota 'E)rot) = Urot — Uyot, — (urot — Urotey Urot — vrot‘.e)

If we also allow for a noise term N in the estimate 4, of the component flow u,, we have
Un = un + N. The estimated depth becomes

(z = Zo)nz + (y — Jo)ny

Z = " - - or
Up — (urotnx + 'Urotny)
: (z — Zo)nz + (y — Jo)ry )
Z = Z- 3
((-77 - zO)n:z: + (3/ - yO)ny + Z(urotcnz + 'vroteny) + NZ ( )

From (3) we can see that 7 is obtained from Z through multiplication by a factor given
by the term inside the brackets, which we denote by D and call the distortion factor. In
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the forthcoming analysis we do not attempt to model the statistics of the noise and we
will therefore ignore the noise term. Thus, the distortion factor takes the form

D= (z = Zo)nz + (y — Jo)ny (4)
(z = zo)ng + (y —23/0)"3/ ,
+2 (22 = B (% + £) +9e) ma + (e (5 + £) = BT — ez my

or, in a more compact form

_ (z = Zo) nz + (y — do) ny
(2 = 2o+ Ztrot) Nz + (Y — Yo + Zrot,) Ty

Equation (4) describes, for any fixed direction (n;,ny) and any fixed distortion factor D, a
surface f(z,y,Z) = 0 in space, which we call an iso-distortion surface. For specific values
of the parameters zg, Yo, Zo, Jo, @, B, e and (ng,ny), this iso-distortion surface has the
obvious property that points lying on it are distorted in depth by the same multiplicative
factor D. Also, from (3) it follows that the transformation from perceptual to physical
space is a Cremona transformation.

It is important to realize that, on the basis of the preceding analysis, the distortion
of depth also depends upon the direction (n;,n,) and is therefore different for different
directions of flow in the image plane. This means simply that if one estimates depth
from optical flow in the presence of errors, the results can be very different depending on
whether the horizontal, vertical, or any other component is used; depending on the direc-
tion, any value between —co and +0o can be obtained! It is therefore imperative that a
good understanding of the distortion function be obtained, before visual correspondences
are used to recover the depth or structure of the scene.

In order to derive the iso-distortion surfaces in 3D space we substitute z = %{ and

y = % in (4), which gives the following equation:
D ((aeXY = B (X* + 2%) +4.Y Z) s + (0 (Y2 + 2) = BXY — 4. XZ) n,)

A

describing the iso-distortion surfaces as quadratic surfaces—in the general case, as hy-
perboloids. One such surface is depicted in Figure 2. Throughout the paper we will need
access to the iso-distortion surfaces from two points of view. On the one hand we want
to compare surfaces corresponding to the same D, but different gradient directions; thus
we are interested in the families of D iso-distortion surfaces (see Figure 3a). On the
other hand we want to look at surfaces corresponding to the same gradient direction n,
but different D’s, the families of n iso-distortion surfaces (see Figure 3b). We will also
be interested in the intersections of the surfaces with planes parallel to the X7, YZ,
and XY planes. These intersections give rise to families of iso-distortion contours; for
an example see Figure 4.

2.2 Visualization of Iso-distortion Surfaces

The iso-distortion surfaces presented in the previous section were developed for the gen-
eral case, i.e., when the 3D transformation between the views is a general rigid motion.
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Figure 2: Iso-distortion surface in XY Z space. The parameters are: zo = 10, 29, = —1,

Yo = —25, yo. = —5, @ = —0.05, B = —0.1, 7. = —0.005, f =1, D = 1.5, n, = 0.7.

Figure 3: (a) Family of D iso-distortion surfaces for n, = 1,0.7,0. (b) Family of n
iso-distortion surfaces for D = 0.3,3000,1.5. The other parameters are as in Figure 2.

However, the psychophysical experiments that we will explain in the sequel considered
constrained motion: rotation only around the Y-axis and translation only in the XZ
plane. The only motion parameters to be considered are therefore S, zo and 2o, and the
iso-distortion surfaces become

Ny

DB.X*n, + DB.Z*n, + DB XYn, — (D —1) Xn; — (D — 1) Yn, — (20 — Dzo) 7 =0

which in general constitute hyperboloids. For horizontal flow vectors (n, = 1,n, =
0) they become elliptic cylinders and for vertical flow vectors they become hyperbolic

cylinders.
Figure 5 provides an illustration of an iso-distortion surface for a general flow direction

(here n, = 0.7, n, = 0.714). For our purposes, only the parts of the iso-distortion surfaces
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Figure 4: Intersection of a family of n iso-distortion surfaces (as shown in Figure 3b)
with the X Z plane gives rise to a family of iso-distortion contours.

within the range visible from the observer are of interest. Since in the motion considered
later the FOE has a large value, these parts show very little curvature and appear to be
close to planar, as can be seen from Figure 5b.

Figure 5: (a) A general iso-motion surface in 3D space. The Z-axis corresponds to the
optical axis. (b) Section of an iso-motion surface for a limited field of view in front of
the image plane for large values of zo.

In order to make it easier to grasp the geometrical organization of the iso-distortion
surfaces we next perform a simplification and use in addition to 3D space also visual
space (that is, zyZ space): Within a limited field of view, terms quadratic in the image
coordinates are small relative to linear and constant terms; thus we ignore them for the
moment, which simplifies the rotational term for the motions considered to (Urot, Urot) =
(‘/Bcf ’ 0)

In visual space, i.e., zyZ space, that is the space perceived under perspective pro-
jection, where the fronto-parallel dimensions are measured according to their size on the
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image plane, the iso-distortion surfaces take the following form:
[z(D —1) + (£0 — Dxo)|ns + y(D — 1)ny — DB fZn, =0

That is, they become planes with surface normal vectors ((D—1)ng, (D—1)ny, —DBc fne).
For a fixed D, the family of D iso-distortion surfaces obtained by varying the direction
(ng,ny) is a family of planes intersecting on a line /. If we slice these iso-distortion planes
with a plane parallel to the zy (or image) plane, we obtain a pencil of lines with center
lying on the z axis (the point through which line [ passes) (see Figure 6a).

Ay a

(a)

Figure 6: Simplified iso-distortion surfaces in visual space. (a) Intersection of the family
of the simplified D iso-distortion surfaces (planes) for different directions (n.,n,) with a
plane parallel to the image plane. (b) A circle represents the intersections of the family of
the D iso-distortion surfaces with planes parallel to the image plane. (c) In visual space
a family of D iso-distortion surfaces is characterized by a cone (the holistic surface).

In our forthcoming analysis we will need to consider the family of iso-distortion
surfaces for a given distortion D, that is, the D iso-distortion surfaces for all direc-
tions (ng,ny). Thus, we will need a compact representation for the family of D iso-
distortion surfaces in 3D space. The purpose of this representation is to visualize the
high-dimensional family of D iso-distortion surfaces in (z,y, Z, n) space through a surface
in (z,y, Z) space in a way that captures the essential aspects of the parameters describing
the family and thus the underlying distortion. As such a representation we choose the
following surfaces, hereafter called holistic or H-surfaces, which are most easily under-
stood through their cross sections parallel to the zy plane: Considering a planar slice of
the family of D iso-distortion surfaces, as in Figure 6a, we obtain a pencil of lines. As a
representation for these lines we choose the circle with diameter extending from the origin
to the center of the pencil (Figure 6b). This circle clearly represents all orientations of
the lines of the pencil (or the iso-distortion planes in the slicing plane). Any point P of
the circle represents the slice of the iso-distortion plane which is perpendicular to a line
through the center (O) and P.



If we now move the slicing plane parallel to itself, the straight lines of the pencil will
trace the iso-distortion planes and the circle will change its radius and trace a circular
cone with the Z axis as one ruling (Figure 6¢).

The circular cones are described by the following equation:

22(D — 1) + (#0 — Dzo) @ + y*(D — 1) — DB.fZz = 0
or (m— (on—i?o-l-DﬂefZ))z_i—yz: [D(%'*',BefZ)—fcor

2(D-1) 2(D -1)
Thus their axes are given by
Dzg— 3o+ DBfZ —2(D—-1)z2=0, y=0

Slicing the cones and the simplified iso-distortion surfaces with planes parallel to the xﬁz

plane as in Figure 6b, the circles we obtain have center (z,y,Z) = (-D—@;(ig%ﬁ, 0,7

and radius ﬂ%———%ﬁi. The circular cones serve as a holistic representation for the
family of iso-distortion surfaces represented by the same D, therefore the name holistic
or H-surface. It should be noted here that the holistic surfaces become cones only in the
case of the constrained 3D motion considered in this paper. In the general case they are
hyperboloids.

It must be stressed at this point that the iso-distortion surfaces should not be confused
with the H-surfaces. Whereas a D iso-distortion surface for a direction n represents all
points in space distorted by the same multiplicative factor D for image measurements in
direction n, the holistic surfaces do not represent any actually existing physical quantity;
they serve merely as a tool for visualizing the family of D iso-distortion surfaces as n
varies, and will be needed in explaining the distortion of space due to motion.

The H-surfaces for the families of iso-distortion surfaces vary continuously as we vary
D. For D = 0 we obtain a cylinder with the Z-axis and the line z = % as diametrically
opposite rulings. For D = 1 we obtain a plane parallel to the zy plane given by Z = -‘ﬁ—f?;
the cone for D = oo and the cone for D = —oo coincide. Thus we can divide the space
into three areas: the areas between the D = 0 cylinder and the D = —oo cone, which
only contain cones of negative distortion factor; the area between the D = oo cone and
the D = 1 plane, with cones of decreasing distortion factor; and the area between the
D = 0 cylinder and the D = 1 plane, with cones of increasing distortion factor. All
the holistic surfaces intersect in the same circle, which is the intersection of the D = 0
cylinder and the D = 1 plane (see Figure 7a). Since the holistic surfaces intersect in one
plane, any family of n iso-distortion surfaces intersects in a line in that plane.

To go back from visual to actual space, we have to compensate for the perspective
scaling. In actual 3D space the iso-distortion surfaces are given by the equation

Ing
f

describing parabolic cylinders curved in the Z dimension. Also the circular cones have
an additional curvature in the Z dimension, and thus the H-surfaces in 3D space are
surfaces of the form

X%(D —1)f + YD = 1)f + (&0 — Do) XZ — DBXZ*f =0

An illustration is given in Figure 7b.

DB.2% + (1 = D)Xny + (1 — D)Yn, + (Dzo — £0) 225 =0




Figure 7: (a) Holistic surfaces (cones) in visual space, labeled with their respective dis-
tortion factors. (b) Holistic surfaces (third-order surfaces) in 3D space.

3 Psychophysical Experiments on Depth Perception

In the psychophysical literature a number of experiments has been reported that docu-
ment a perception of depth which does not coincide with the actual situation. Most of
the experiments were devoted to stereoscopic depth perception, using tasks that involved
the judgment of depth at different distances. The conclusion usually obtained was that
there is an expansion in the perception of depth of near distances and a contraction of
depth at far distances. However, most of the studies did not explicitly measure perceived
viewing distance, but asked for relative distance judgments instead. Recently a few ex-
periments have been conducted by Tittle et al. [24] comparing aspects of depth judgment
due to stereoscopic and monocular motion perception. The experiments were designed
to test how the orientations of objects in space and their absolute distances influence the
perceptual judgment. It was found that the stereoscopic cue and the motion cue give
very different results.

The literature has presented a variety of explanations and proposed a number of
models explaining different aspects of depth perception. Recently, great interest has
arisen in attempts to explain the perception of visual space using well-defined geometries,
such as similarity, conformal, affine, or projective transformations mapping physical space
into perceived space, and it has been debated whether perceptual space is Euclidean,
hyperbolic, or elliptic [27]. Our analysis shows that these models do not provide a
general explanation for depth perception, and proposes that much of the data can be
explained by the fact that the underlying 3D transformation is estimated incorrectly.
Thus the transformation between physical and perceptual space is more complicated
than previously thought. For the case of motion or stereo it is rational and belongs to
the family of Cremona transformations [23].

We next describe a number of experiments and show that their results can be ex-
plained on the basis of imprecise estimation of the 3D transformation and thus can be
predicted by the iso-distortion framework introduced here. Our primary focus in Sec-
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tion 3.1 is on the experiments testing the difference between motion and stereo performed
by Tittle et al. [24]. In addition, in Section 3.2 we describe two well-known stereoscopic
experiments.

3.1 Distance Judgment from Motion and Binocular Stereopsis

In the first experiment [24] that we discuss, observers were required to adjust the ec-
centricity of a cylindrical surface until its cross-section in depth appeared to be circular.
The observers could manipulate the cylindrical surface (shown in Figure 8) by rescaling
it along its depth extent b (which was aligned with the Z-axis of the viewing geometry
when the cylinder was in a fronto-parallel orientation) with the workstation mouse. Such
a task requires judgment of relative distance. In order for the cross-section to appear
circular, the vertical extent and the extent in depth of the cylinder, a and b, have to
appear equal.

The experiments were performed for static binocular stereoscopic perception, for
monocular motion, and for combined motion and stereopsis. The stereoscopic stimuli
consisted of stereograms, and the monocular ones were created by images of cylinders
rotating about a vertical axis (see Figure 8). In all the experiments the observers had
to fixate on the front of the surface where it intersected the axis of rotation, and the
cylindrical surfaces were composed of bright dots.

The effect of the slant and distance of the cylinder on the subjective depth judgment
was tested. In particular, the cylinder had a slant in the range 0° to 30°, with 0° corre-
sponding to a fronto-parallel cylinder as shown in Figure 8, and the distance ranged from
70 to 170 cm. Figure 9 displays the experimental results in the form of two graphs, with
the z axis showing either the slant or distance and the y axis the adjusted eccentricity.
An adjusted eccentricity of 1.0 corresponds to a veridical judgment, values less than this
indicate an overestimate of b relative to a, and values greater than 1.0 indicate an under-
estimate. As can be seen from the graphs, whereas the perception of depth from motion
only does not depend on the viewing distance, the extent b is overestimated for near dis-
tances and underestimated for far distances under stereoscopic perception. On the other
hand, the slant of the surface has a significant influence on the perception of motion—at
0° b is overestimated and at 30° underestimated—and has hardly any influence on per-
ception from stereo. The results obtained from the combined stereo and motion displays
showed an overall pattern similar to those of the purely stereoscopic experiments.

For stereoscopic perception only, a very similar experiment, known as apparently
circular cylinder (ACC) judgment, was performed in [9, 13], and the same pattern of
results was reported there.

In a second experiment performed by Tittle et al. [24], the task was to adjust the angle
between two connected planes until they appeared to be perpendicular to one another
(see Figure 10).

Again the surfaces were covered with dots and the fixation point was at the intersec-
tion of the two planes and the rotation axis. As in the first experiment the influences
of the cue (stereo, motion, or combined motion and stereo), the slant and the viewing
distance on the depth judgment were evaluated. This task again requires a judgment of
relative distance, that is, the depth extent b relative to the vertical extent a (as shown in
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Figure 8: From [24]: a schematic view of the cylinder stimulus used in Experiment 1.
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Figure 9: From [24]: Average adjusted cylinder eccentricity for the stereo, motion, and
combined conditions as a function of simulated viewing distance and surface slant. An
adjusted eccentricity of 1.0 indicates veridical performance.

Figure 10). The results displayed in Figure 11 are qualitatively similar to those obtained
from the first experiment. An adjusted angle greater than the standard 90° corresponds
to an overestimation of the extent in depth, and one less than 90° represents underesti-

mation.

3.2 Stereoscopic Experiments: Apparent Fronto-parallel Plane/Apparent
Distance Bisection

A classic test of depth perception for stereoscopic vision is the apparent fronto-parallel
plane (AFPP) experiment [9, 22]. In this experiment, an observer views a horizontal
array of targets. One target is fixed, usually in the median plane (Y-Z plane). The
other targets are fixed in direction but are variable in radial distance under control of
the subject. The subject sets these targets so that all of the targets appear to lie in
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Figure 10: From [24]: a schematic view of the dihedral angle stimulus used in Experi-
ment 2.
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Figure 11: From [24]: Adjusted dihedral angle as a function of surface slant and simulated
viewing distance. An adjusted angle of 90° indicates veridical performance.

a fronto-parallel plane. Care is taken so that fixation is maintained at one point. The
results are illustrated in Figure 12.

The AFPP corresponds to a physical plane only at one distance, usually between 1m
and 4m [9]. At far distances, the targets are set on a surface convex to the observer; at
near distances they are set on a surface increasingly concave to the observer. Generally,
the AFPP locus is skewed somewhat, that is, one side is farther away than the other.

In another classic experiment, instead of instructing a subject to set targets in an
apparent fronto-parallel plane, the subjects are asked to set one target at half of the
perceived distance of another target, placed in the same direction. This is known as
the apparent distance bisection task or the ADB task [8]. In practice the targets would
interfere with each other if they were in exactly the same direction, so they are displaced
a few degrees. The task and the results are illustrated in Figure 13. These results were
obtained with free eye movements, but the author claimed that the effect has also been
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Figure 12: Data for the apparent fronto-parallel plane for different observation distances.
In each case, F is the point of fixation. The visual field of the target extends from —16°

to 16°. From [22].

replicated with fixation on one point.
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Figure 13: Apparent distance bisection task: (a) Far fixation point. (b) Correct distance
judgment at intermediate fixation point. (c) Near fixation point.

4 Explanation of Psychophysical Results

4.1 The Viewing Geometry

(a) Stereo The geometry of binocular projection for an observer fixating on an envi-
ronmental point is illustrated in Figure 14.. We fix a coordinate system (LXY Z) on the
left eye with the Z-axis aligned with the optical axis and the Y-axis perpendicular to the
fixation plane. In this system the transformation relating the right eye to the left eye is

14



a rotation around the Y-axis and a translation in the XZ plane. If we make the small
baseline assumption, we can approximate the disparity measurements through a con-
tinuous flow field. The translational and rotational velocities are (U,0, W) and (0, 3,0)
respectively, and therefore the horizontal A and vertical v disparities are given by

2
h =%(z—mz) —P (%-i-f)

Bzy
y — —
f
In the coordinate system thus defined (Figure 14), § is negative and z¢ is positive, and

for a typical viewing situation very large. Therefore the epipole is far outside the image
plane, which causes the disparity to be close to horizontal.

—_w
v =7z

Figure 14: Binocular viewing geometry. LK = U dt (translation along the X axis),
KR = W dt (translation along the Z axis), LFR = fdt = convergence angle (resulting
from rotation around the Y axis). L, K, R, F are in the fixation plane and dt is a
hypothetical small time interval during which the motion bringing X;Y7,Z;, to XrYrZR
takes place.

(b) Motion In the experiments described in Section 3.1 the motion of the object
consists of a rotation around a vertical axis in space.

We fix a coordinate system to a point S = (X, Ys, Zs) on the object in the Y'Z plane
through which the rotation axis passes. At the time of observation it is parallel to the
reference coordinate system (OXY Z) on the eye of the observer (see Figure 15). In the
new coordinate system on the object, the motion is purely rotational, and is given by the
velocity (0,wy,0). If we express this motion in the reference system as a motion of the
observer we obtain a rotation around the Y-axis and an additional translation in the X Z-
plane given by the velocity (wyZs,0, —w,X;). Thus in the notation used before, there is

a rotation with velocity # = —w,, and a translation with epipole (z,0) = (—%{“‘—i 0) or

s
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(00,0) if X, = 0. The value u, of the flow component u, along a direction n = (n,ny)
is given by

(Xl s vX. | o
e BB (Do ()

Since X, is close to zero, o again takes on very large values. In our coordinate system
(see Figure 15) f is positive and zo is positive, since the circular cross-section is to the
right of the Y Z plane.

Figure 15:

Although the motion in the stereo and motion configurations is qualitatively similar,
the psychophysical experimental results show that the system’s perception of depth is not.
This demonstrates that the two mechanisms of shape perception from motion and stereo
work differently. We account for this by the fact that the 2D disparity representation
used in stereo is of a different nature than the 2D velocity representation computed for
further motion processing.

Tt is widely accepted that horizontal disparities are the primary input in stereoscopic
depth perception although there have been many debates as to whether vertical disparities
play a role in the understanding of shape [14, 21]. The fact is that for any human stereo
configuration, even with fixation at nearby points, the horizontal disparities are much
larger than the vertical ones. Thus, for the purpose of the forthcoming analysis, in the
case of stereo we only consider horizontal disparities, although a small amount of vertical
disparity would not influence the results.

On the other hand, for a general motion situation the actual 2D image displacements
are in many directions. Due to computational considerations from local image measure-
ments, only the component of flow perpendicular to edges can be computed reliably. This
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is the so-called aperture problem. In order to derive the optical flow, further processing
based on smoothing and optimization procedures has to be performed, which implicitly
requires some assumptions about the smoothness of the scene. For this reason we ex-
pect the 2D image velocity measurements used by the system to be distributed in many
directions, although the optical flow in the experimental motion is mostly horizontal.

Based on these assumptions about the velocity representations used, in the next two
sections the experimental data—first the data from motion perception, then the data
from stereo perception—are explained through the iso-distortion framework.

4.2 Motion

To visualize this and later explanations let us look at the possible distortions of space for
the motion and stereo configurations considered here. Figure 16a gives a sketch of the
holistic surfaces (third-order surfaces) for negative rotational errors (5;) and Figure 16b
shows the surfaces for positive rotational errors. In both cases z is positive. A change
of the error in translation leaves the structure qualitatively the same; it only affects the
sizes of the surfaces. In the overall pattern we observe a shift in the location of the
intersection of the holistic surface. Since the intersection is in the D = 1 plane given
by the equation Z = ——;—f)&, an increase in zo, causes the intersection to have a larger Z
coordinate in Figure 16a and a smaller one in Figure 16b. For both the motion and the
stereo experiments, the FOE lies far outside the image plane. Therefore only a small part
of the illustrated iso-distortion space actually lies in the observer’s field of view. This
part is centered around the Z-axis as schematically illustrated in Figure 16.

scene > scene

Figure 16: Holistic third-order surfaces for the geometric configurations described in the
experiments. (a) Negative B.. (b) Positive f..

The guiding principle in our explanation of the motion experiments lies in the min-
imization of negative depth estimates. We do not assume any scene interpretation; the
only thing we know about the scene is that it lies in front of the image plane, and thus
all depth estimates have to be positive. Therefore, we want to keep the number of im-
age points, whose corresponding scene points would yield negative depth values due to
erroneous estimation of the 3D transformation, as small as possible.
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To represent the negative depth values we use a geometric statistical model: The
scene in view lies within a certain range of depths between Zyin and Zpyax. The flow
measurement vectors on the image are distributed in many directions; we assume that
they follow some distribution. We are interested in the points in space for which we
would estimate negative depth values.

For every direction n the points with negative depths lie between the D = 0 and
D = —co distortion surfaces within the range of depths covered by the scene. Thus, for
every gradient direction we obtain a 3D subspace, covering a certain volume. The sum
of all volumes for all gradient directions, normalized by the flow distribution considered
here, represents a measure of the likelihood of negative depth estimates being derived
from the image flow on the basis of some motion estimate. We call this sum the negative
depth volume.

Let us assume there is some error in the estimate of the rotation, .. We are interested
in the translation error zg, that will minimize the negative depth volume. Under the
assumption that the distribution of flow directions is uniform (that is, the flow directions
are uniformly distributed in every direction and at every depth within the range between
Zrmin a0d Zgay), and that the simplified model is used (i.e., quadratic terms are ignored)
and the computations are performed in visual space, the minimum occurs when the
intersection of the iso-distortion cones is at the middle of the depth range of the scene.
That is, the D = 1 plane is given as Z = —£% = ZuiatZmex and go, = —f, f ZnintZmax [9],

Of course, we do not know the exact ﬂow distribution, or the exact scene depth
distribution, nor do we expect the system to optimally solve a minimization problem.
We do, however, expect that the estimation of motion is such that the negative depth
volume is kept rather small and thus that zo, and f. are of opposite sign and the D =1
plane is between the smallest and largest depth of the object observed.

In the following explanation we concentrate on the first experiment, which was con-
cerned with the judgment about the circular cylinder.

We assume that the system underestimates the value of zq, i.e., zo, > 0, because
o is very large and might even be infinite. Thus f. < 0, and the distortion space of
Figure 16b becomes applicable.

The holistic surfaces corresponding to negative iso-distortion surfaces in the field of
view are very large in their circular extent, and thus the flow vectors leading to negative
depth estimates are of large slope, close to the vertical direction. Figure 17 shows a cross-
section through the negative iso-distortion surfaces and the negative holistic surfaces for
a value Z in front of the D =1 plane.

The rotating cylinder constitutes the visible scene. Its vertical cross-section along
the axis of rotation lies in the space where z is positive. The most frontal points of the
cross-section always lie in front of the D = 1 plane, and as the slant of the cylinder
increases, the part of the cross-section which lies in front of the D = 1 plane increases as
well.

The minimization of the negative depth volume and thus the estimation of the motion
is independent of the absolute depth of the scene. Therefore a change in viewing distance
should not have any effect on the depth perceived by the observer, which ezplains the

first experimental observation.
The explanation of the second result lies in a comparison of the estimated vertical
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Figure 17: Cross-sections through negative iso-distortion surfaces and negative holistic
surfaces. The flow vectors yielding negative depth values have large slopes.

~ extent, &, and the extent in depth, b.

Figures 18a-c illustrate the position of the circular cross-section in the distortion
space for the fronto-parallel position of the cylinder. Section a = (AC) lies at one
depth and intersects the cross section of the holistic surface as shown in Figure 18b.
Section & = (BC) lies within a depth interval between depth values Zp and Z¢. The
cross-sections of the holistic surfaces are illustrated in Figure 18c. To make quantitative
statements about the distortion D at any depth value, we assume that at any point P,
D is the average value of all the iso-distortion surfaces passing through P. With this
model we derive & and b as follows:

a = Da (5)
where D is the average distortion at the depth of section AC. The estimate b is derived
as the difference of the depth estimate at points B and C. We denote by ¢ the difference

between the average distortion factor of extent a and the distortion at point C, and we
use ¢ to describe the change in the distortion factor from point C to point B. Thus

i) = ZC—ZB
= (D+6)Z¢c —(D+6+¢€)(Zc - b)
= (D+8)b—e¢(Zc—b) (6)

Z¢ is much larger than b and thus (Z¢ — b) is always positive. Comparing equations (5)
and (6) we see that for @ = b the factor determining the relative perceived length of a
and b depends primarily on é and e.

For the case of a fronto-parallel cylinder, where extent a appears behind the D =1
plane, § is positive (see Figure 18b) and € is negative (see Figure 18c), which means that
b will be perceived to be greater than a.
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Figure 18: (a)-(c) Position of fronto-parallel cylinder in iso-distortion space. (d)-(f)
Position of slanted cylinder in iso-distortion space. The figure shows that extent a appears
behind the D =1 plane in (b—c) and in front of the D = 1 plane in (e-f).
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As the cylinder is slanted (see Figures 18d—f), the circular cross-section also becomes
slanted. As a consequence the cylinder covers a larger depth range and extent a appears
closer to or even in front of the D =1 plane (see Figure 18e). Points on section b have
increasing X-coordinates as Z increases (see Figure 18f). As the slant becomes large
enough ¢ reaches a negative value, € reaches a positive value and b is perceived to be
smaller than a. Therefore the results for the experiments tnvolving the cylindrical surface
for the case of motion can be explained in terms of the iso-distortion diagrams with D
that decreases or increases with Z.

The second experiment, concerned with the judgment of right angles, can be explained
by the same principle. The estimate is again based on judgment of the vertical extent
a relative to the extent in depth b (see Figure 10). Either we encounter the situation
where the sign of z¢ is positive, so that a and b are measured mostly to the right of the
Y Z plane, and Figure 16b explains the iso-distortion space; or xg is negative, so that a
and b are mostly to the left of the Y'Z plane, and the iso-distortion space is obtained by
reflecting the space of Figure 16b in the Y Z plane. In both cases the explanation given
for the first experiment still applies. Due to the changes of position of the two planes in
iso-distortion space with a change in slant, the extent in depth will be overestimated for
the fronto-parallel position and underestimated for larger slants.

4.3 Stereo

In the case of stereoscopic perception the primary 2D image input is horizontal disparity.
Due to the far-off location of the epipole the negative part of the distortion space for
horizontal vectors does not lie within the field of view, as can be seen from Figure 16.

Since depth estimation in stereo vision has long been of concern to researchers in psy-
chophysics, a large amount of experimental data has been published, and the parameters
of the human viewing geometry are well documented. In [9] Foley studied the relation-
ship between viewing distance and error in the estimation of convergence angle (5 in
our notation). From experimental data he obtained the relationship between perceived
convergence angle and actual convergence angle shown in Figure 19.

5 1015
Convergence Angle (deg)

Perceived Convergence Angle(deg)

Figure 19: Perceived convergence angle as a function of convergence angle.

According to his data, the convergence angle is overestimated at far distances and
underestimated at near distances. Foley expressed the data through the following rela-
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tionship: )

—B=E+G(-p)
with E and G in the vicinity of 0.5; in the figures displayed here the following parameters
based on data of Ogle [22] have been chosen: E = 0.91° and G = 0.66°.

On the basis of these data, models have been proposed [8, 9, 22] that explain the
perception of concavity and convexity for objects in a fronto-parallel plane. To account
for the skewing described in the AFPP task the ocular images have been assumed to be
of different sizes.

In our explanation based on the iso-distortion framework we make use of the exper-
imental data of Figure 19 to explain f.. For far fixation points f. is negative and the
iso-distortion space of Figure 16a applies. If we also take into account the quadratic
term in the horizontal disparity formula of Section 4.1(a) (that is, the rotational part
,65( + f)), we obtain an iso-distortion configuration for horizontal vectors as shown in
Flgure 20. In particular Figure 20a shows the contours obtained by intersecting the iso-
distortion surfaces with planes parallel to the zZ plane in visual space, and Figure 20b
shows the same contours in actual 3D space. Irrespective of zg, the iso-distortion factor
decreases with depth Z. The sign of z,, determines whether the D = 1 contour (the
intersection of the D = 1 surface with the zZ plane) is in front of or behind the image
plane, and the exact position of the object with regard to the D =1 contour determines
whether the object’s overall size is over- or underestimated.

For near fixation points, B is positive and the iso-distortion space appears as in
Figure 16b. The corresponding iso-distortion contours derived by including the quadratic
term are illustrated in Figure 20c and d.

The perceived estimates a and b are modelled as before. However, this time it is not
necessary to refer to an average distortion D, since only one flow direction is considered.
Section ¢ lies in the yZ plane and @ is estimated as aD, with D the distortion factor at
point C. The estimate for b is

b= Db— ¢(Zc —b)

As can be seen from Figures 20a and c, ¢ is increasing if the fixation point is distant and
decreasing if the fixation point is close, and we thus obtain the under- and overestimation
of b as experimentally observed. A slanting of the object has very little effect on the
distortion pattern because the fixation point is not affected by it. As long as the slant is
not too large, causing € to change sign, the qualitative estimation of depth should not be
affected by a change in slant. The slant might, however, influence the amount of over-
and underestimation. There should be a decrease in the estimation error as the slant
increases, since section b covers a smaller range of the distortion space. This can actually
be observed from the experimental data in Figure 9.

The same explanation covers the second experiment related to the judgment of angles.

The iso-distortion patterns outlined here also explain the purely stereoscopic experi-
ments. With regard to the AFPP task it can be readily verified that the iso-distortion
diagram of Figure 20a (far fixation point) causes a fronto-parallel plane to appear on
a concave surface, and thus influences the observer to set them at a convex AFPP lo-
cus, whereas the diagram of Figure 20c (near fixation point) influences the observer to
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Figure 20: Iso-distortion contours for horizontal disparities: (a, b) for far fixation point
in visual space (a) and actual space (b); (c, d) for near fixation point in visual and actual
space.

set them on a concave AFPP locus. In addition, the skewing of the AFPP loci is also
predicted by the iso-distortion framework.

Finally, with regard to the ADB task, the iso-distortion patterns predict that the
target will be set at a distance closer than half-way to the fixation point if the latter is
far, and at a distance further than half-way to the fixation point if the latter is near,
which is in agreement with the results of the task.
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5 Conclusions

The geometric structure of the visual space perceived by humans has been a subject of
great interest in philosophy and perceptual psychology for a long time. With the advent
of digital computers and the possibility of constructing anthropomorphic robotic devices
that perceive the world in a way similar to the way humans and animals perceive it,
computational studies are beginning to be devoted to this problem [15].

Many synthetic models have been proposed over the years in an attempt to account
for the systematic distortion between physical and perceptual space. These range from
Euclidean geometry [10] to hyperbolic [18] and affine [25] geometry. Many other inter-
esting approaches have also been proposed, such as the Lie group theoretical studies of
Hoffman [11] and the work of Koenderink and van Doorn [16], that are characterized
by a deep geometric analysis attempting to discover invariant quantities of the distorted
perceptual space under some assumed model. It is generally believed in the biological
sciences that a large number of shape representations are computed in our heads and dif-
ferent cues are processed with different algorithms. For the case of motion and/or stereo,
there might exist more than one process performing local analysis of motion or stereo
disparity. The analysis proposed here has concentrated on a global examination of mo-
tion or disparity fields to explain a number of psychological results about the distortion
of visual space that takes place over an extended field of view.

In contrast to the synthetic approaches in the literature, we have offered an analytic
account of a number of properties of perceptual space. Our starting point was the fact
that when we have multiple views of a scene (motion or stereo), then the 3D rigid trans-
formation relating the views, and functions of local image correspondence, determine the
perceived depth of the scene. However, even slight miscalculations of the parameters
of the 3D transformation result in computing a distorted version of the actual physical
space. In this paper, we studied geometric properties of the computed distorted space.
The transformation between physical and perceptual space (i.e., actual and computed
space) is a Cremona transformation. We have concentrated on analyzing the distortions
from first principles, through an understanding of iso-distortion loci. The analytic geo-
metric framework we have introduced is adequate for computationally explaining a set
of psychophysical experiments related to the perception of shape from either motion or
stereo.

It turns out that the distortion of perceptual space depends on the direction in the
image along which the computation of local correspondence is made. Our analysis leads
us to question whether there is any deep reason why the metrics of stereoscopic space
and motion space must be different, as some investigators are accustomed to believe
[24, 27]). Our unified framework explains the differences between the stereoscopic and
motion perceptual spaces on the basis of the image directions along which measurements
are made; for stereo, the assumption is that they are made in the horizontal direction,
while for motion they are made in any possible direction.

Finally, in the light of the misperceptions arising from stereopsis and motion, the
question of how much information we should expect from these modules must be raised.
The iso-distortion framework can be used as an avenue for discovering other properties
of perceived space. Such properties may lead to new representations of space that can
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be examined through further psychophysical studies.
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